Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Genomics ; 25(1): 177, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38355406

ABSTRACT

BACKGROUND: Prion diseases, also known as transmissible spongiform encephalopathies (TSEs) remain one of the deleterious disorders, which have affected several animal species. Polymorphism of the prion protein (PRNP) gene majorly determines the susceptibility of animals to TSEs. However, only limited studies have examined the variation in PRNP gene in different Nigerian livestock species. Thus, this study aimed to identify the polymorphism of PRNP gene in Nigerian livestock species (including camel, dog, horse, goat, and sheep). We sequenced the open reading frame (ORF) of 65 camels, 31 village dogs and 12 horses from Nigeria and compared with PRNP sequences of 886 individuals retrieved from public databases. RESULTS: All the 994 individuals were assigned into 162 haplotypes. The sheep had the highest number of haplotypes (n = 54), and the camel had the lowest (n = 7). Phylogenetic tree further confirmed clustering of Nigerian individuals into their various species. We detected five non-synonymous SNPs of PRNP comprising of G9A, G10A, C11G, G12C, and T669C shared by all Nigerian livestock species and were in Hardy-Weinberg Equilibrium (HWE). The amino acid changes in these five non-synonymous SNP were all "benign" via Polyphen-2 program. Three SNPs G34C, T699C, and C738G occurred only in Nigerian dogs while C16G, G502A, G503A, and C681A in Nigerian horse. In addition, C50T was detected only in goats and sheep. CONCLUSION: Our study serves as the first to simultaneously investigate the polymorphism of PRNP gene in Nigerian livestock species and provides relevant information that could be adopted in programs targeted at breeding for prion diseases resistance.


Subject(s)
Prion Diseases , Prions , Scrapie , Animals , Horses/genetics , Sheep/genetics , Dogs , Prions/genetics , Prions/metabolism , Prion Proteins/genetics , Polymorphism, Single Nucleotide , Livestock/genetics , Open Reading Frames , Phylogeny , Camelus/genetics , Prion Diseases/genetics , Prion Diseases/veterinary , Goats/genetics , Goats/metabolism , Scrapie/genetics
2.
Prion ; 17(1): 44-54, 2023 12.
Article in English | MEDLINE | ID: mdl-36892181

ABSTRACT

Polymorphism of the prion protein gene (PRNP) gene determines an animal's susceptibility to scrapie. Three polymorphisms at codons 136, 154, and 171 have been linked to classical scrapie susceptibility, although many variants of PRNP have been reported. However, no study has investigated scrapie susceptibility in Nigerian sheep from the drier agro-climate zones. In this study, we aimed to identify PRNP polymorphism in nucleotide sequences of 126 Nigerian sheep by comparing them with public available studies on scrapie-affected sheep. Further, we deployed Polyphen-2, PROVEAN, and AMYCO analyses to determine the structure changes produced by the non-synonymous SNPs. Nineteen (19) SNPs were found in Nigerian sheep with 14 being non-synonymous. Interestingly, one novel SNP (T718C) was identified. There was a significant difference (P < 0.05) in the allele frequencies of PRNP codon 154 between sheep in Italy and Nigeria. Based on the prediction by Polyphen-2, R154H was probably damaging while H171Q was benign. Contrarily, all SNPs were neutral via PROVEAN analysis while two haplotypes (HYKK and HDKK) had similar amyloid propensity of PRNP with resistance haplotype in Nigerian sheep. Our study provides valuable information that could be possibly adopted in programs targeted at breeding for scrapie resistance in sheep from tropical regions.


Subject(s)
Prion Proteins , Scrapie , Sheep , Animals , Gene Frequency , Genetic Predisposition to Disease , Polymorphism, Single Nucleotide/genetics , Prion Proteins/genetics , Scrapie/genetics , Sheep/genetics
3.
Gene ; 855: 147121, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36535463

ABSTRACT

Scrapie is a fatal prion protein disease stiffly associated with single nucleotide polymorphism (SNPs) of the prion protein gene (PRNP). The prevalence of this deadly disease has been reported in small ruminants, including goats. The Nigerian goats are hardy, trypano-tolerant, and contribute to the protein intake of the increasing population. Although scrapie has been reported in Nigerian goats, there is no study on the polymorphism of the PRNP gene. Herein, we evaluated the genetic and allele distributions of PRNP polymorphism in 132 Nigerian goats and compared them with publicly available studies on scrapie-affected goats. We utilized Polyphen-2, PROVEAN and AMYCO programs to examine structural variations produced by the non-synonymous SNPs. Our study revealed 29 SNPs in Nigerian goats, of which 14 were non-synonymous, and 23 were novel. There were significant differences (P < 0.001) in the allele frequencies of PRNP codons 139, 146, 154 and 193 in Nigerian goats compared with scrapie-affected goats, except for Northern Italian goats at codon 154. Based on the prediction by Polyphen-2, R139S and N146S were 'benign', R154H was 'probably damaging', and T193I was 'possibly damaging'. In contrast, PROVEAN predicted 'neutral' for all non-synonymous SNPs, while AMYCO showed a similar amyloid propensity of PRNP for resistant haplotype and two haplotypes of Nigerian goats. Our study is the first to investigate the polymorphism of scrapie-related genes in Nigerian goats.


Subject(s)
Goat Diseases , Prions , Scrapie , Animals , Sheep/genetics , Prions/genetics , Prion Proteins/genetics , Scrapie/genetics , Scrapie/epidemiology , Goats/genetics , Goat Diseases/genetics , Polymorphism, Single Nucleotide , Codon
4.
Trop Anim Health Prod ; 49(2): 323-336, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27909914

ABSTRACT

Host defense in vertebrates depend on many secreted regulatory proteins such as major histocompatibility complex (MHC) class II which provide important regulatory and effector functions of T cells. Gene polymorphism in the second exon of Capra-DRB gene in three major Nigerian goat breeds [West African Dwarf (WAD), Red Sokoto (RS), and Sahel (SH)] was analyzed by restriction fragment length polymorphisms (RFLP). Four restriction enzymes, BsaHI, AluI, HaeIII, and SacII, were utilized. The association between the polymorphic sites and some heat tolerance traits were also investigated in a total of 70 WAD, 90 RS, and 50 SH goats. Fourteen different types of alleles identified in the Nigerian goats, four of which were found in the peptide coding region (A57G, Q89R, G104D, and T112I), indicate a high degree of polymorphism at the DRB locus in this species. An obvious excess (P < 0.01) of non-synonymous substitutions than synonymous (dN/dS) in this locus is a reflection of adaptive evolution and positive selection. The phylogenetic trees revealed largely species-wise clustering in DRB gene. BsaHI, AluI, HaeIII, and SacII genotype frequencies were in Hardy-Weinberg equilibrium (P > 0.05), except AluI in RS goats and HaeIII in WAD goats (P < 0.05). The expected heterozygosity (H), which is a measure of gene diversity in the goat populations, ranged from 0.16 to 0.50. Genotypes AA (BsaHI), GG, GC and CC (AluI) and GG, GA, AA (HaeIII) appeared better in terms of heat tolerance. The heat-tolerant ability of SH and RS goats to the hot and humid tropical environment of Nigeria seemed better than that of the WAD goats. Sex effect (P < 0.05) was mainly on pulse rate and heat stress index, while there were varying interaction effects on heat tolerance. Variation at the DRB locus may prove to be important in possible selection and breeding for genetic resistance to heat stress in the tropics.


Subject(s)
Goats/physiology , HLA-DR beta-Chains/genetics , Polymorphism, Single Nucleotide , Animals , Breeding , Female , Genetic Variation , Goats/genetics , Male , Nigeria , Phylogeny , Thermotolerance , Tropical Climate
5.
Biochem Genet ; 51(11-12): 954-66, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23835918

ABSTRACT

The DQB1 locus is located in the major histocompatibility complex (MHC) class II region and involved in immune response. We identified 20 polymorphic sites in a 228 bp fragment of exon 2, one of the most critical regions of the MHC DQB1 gene, in 60 Nigerian goats. Four sites are located in the peptide binding region, and 10 amino acid substitutions are peculiar to Nigerian goats, compared with published sequences. A significantly higher ratio of nonsynonymous/synonymous substitutions (dN/dS) suggests that allelic sequence evolution is driven by balancing selection (P < 0.01). In silico functional analysis using PANTHER predicted that substitution P56R, with a subPSEC score of -4.00629 (Pdeleterious = 0.73229), is harmful to protein function. The phylogenetic tree from consensus sequences placed the two northern breeds closer to each other than either was to the southern goats. This first report of sequence diversity at the DQB1 locus for any African goat breed may be useful in the search for disease-resistant genotypes.


Subject(s)
Exons , Genes, MHC Class II , Genetic Variation , Goats/genetics , Major Histocompatibility Complex/genetics , Animals , Goats/immunology , Histocompatibility Antigens Class II/chemistry , Major Histocompatibility Complex/immunology , Molecular Sequence Data , Nigeria , Phylogeny , Polymorphism, Genetic , Polymorphism, Single Nucleotide , Protein Binding , Selection, Genetic , Sequence Alignment , Sequence Analysis, Protein
6.
Trop Anim Health Prod ; 43(3): 561-6, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21080228

ABSTRACT

The population structure of 302 randomly selected West African Dwarf (WAD) and Red Sokoto (RS) goats was examined using multivariate morphometric analyses. This was to make the case for conservation, rational management and genetic improvement of these two most important Nigerian goat breeds. Fifteen morphometric measurements were made on each individual animal. RS goats were superior (P<0.05) to the WAD for the body size and skeletal proportions investigated. The phenotypic variability between the two breeds was revealed by their mutual responses in the principal components. While four principal components were extracted for WAD goats, three components were obtained for their RS counterparts with variation in the loading traits of each component for each breed. The Mahalanobis distance of 72.28 indicated a high degree of spatial racial separation in morphology between the genotypes. The Ward's option of the cluster analysis consolidated the morphometric distinctness of the two breeds. Application of selective breeding to genetic improvement would benefit from the detected phenotypic differentiation. Other implications for management and conservation of the goats are highlighted.


Subject(s)
Goats/anatomy & histology , Animals , Body Weight/physiology , Breeding , Conservation of Natural Resources , Female , Genetic Variation , Goats/genetics , Male , Multivariate Analysis , Nigeria , Principal Component Analysis , Tropical Climate
SELECTION OF CITATIONS
SEARCH DETAIL
...